
Nidhu Devi M Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 1), September 2014, pp.215-219

 www.ijera.com 215 | P a g e

An Energy-Efficient Lut-Log-Bcjr Architecture Using Constant

Log Bcjr Algorithm

Nidhu Devi M*, Seena George**
*(M.tech scholar, Department of ECE, Sree Narayana Gurukulam College of Engineering , Kolenchery, India)

** (Asst. Professor, Department of ECE, Sree Narayana Gurukulam College of Engineering , Kolenchery, India)

Abstract
Error correcting codes are used to correct the data from the corrupted signal due to noise and interference. There

are many error correcting codes. Among them turbo codes is considered to be the best because it is very close to

the Shannon theoretical limit. The MAP algorithm is commonly used in the turbo decoder. Among the different

versions of the MAP algorithm Constant log BCJR algorithm have less complexity and good error performance.

The Constant log BCJR algorithm can be easily designed using look up table which reduces the memory

consumption. The proposed Constant log BCJR decoder is designed to decode two blocks of data at a time, this

increases the throughput. The complexity of the decoder is further reduced by the use of the add compare select

(ACS) units and registers. The proposed decoder is simulated using Xilinx ISE and synthesized using Sparten3

FPGA and found out that Constant log BCJR decoder utilized less amount of memory and power than the LUT

log BCJR decoder.

Index Terms—Add compare select(ACS),turbo codes, Constant log BCJR Algorithm.

I. INTRODUCTION
Over the years, there has been increase in the use

of digital communication in the field of computer,

cellular and satellite communication. The digital

communication, the information is the binary data

which is modulated on the analog waveform and

transmitted through the communication channel. In

the communication channel the information may be

interfered by the noise[7]. At the receiver station the

corrupted signal is demodulated and then it is

converted in the binary bits. Due to the noise the data

may is not the correct replica of the transmitted

signal. So we use channel coding[1] scheme to

protect against the noise and interference.

The turbo codes[2] have been used in many

standard communications. Such as the standard used

by the third Generation Partnership Project (3GPP),

Digital Video Broadcasting (DVB), Universal Mobile

Telecommunication Systems (UMTS), NASA

Consultative Committee for Space Data System

(CCSDS),Wireless Local Area Network (WLAN),

Global System for Mobile communication (GSM)

and Advanced Television Committee(ATSC)

standard. The turbo codes are the concatenated

versions of the two or more codes. Decoding is done

by using LLR calculation. The iterative nature of the

turbo decoding algorithm increases the complexity.

The two decoding algorithm used for the turbo codes

are Maximum A Posteriori (MAP) and Soft Output

Viterbi Algorithm (SOVA) [3]. The MAP

algorithm[4],[5] is based on the most likely data

sequence. While SOVA is based on the most likely

connected path through the trellis tree. The MAP

algorithm performed well than the SOVA at low

SNR. However the implementation of the decoder

using the MAP algorithm is more difficult.

In order to reduce the computational complexity

of the MAP algorithm is usually implemented in the

logarithmic domain and corresponding algorithm is

the log-MAP algorithm. Further the log-MAP

algorithm can be simplified. Then we get max-log-

MAP, constant log MAP and linear log map

algorithm. The log MAP algorithm can be

implemented using look up table. The LUT- log-

BCJR[6] decoder is based on this. By the use of the

constant log-BCJR(constant log-MAP) algorithm we

can reduce the look up table elements than in the

LUT- log- BCJR[8] algorithm. Again the complexity

in the hardware can reduce by the use of low complex

structure. So new architecture is developed which

contain only registers and add compare and select

unit for the constant log-BCJR decoder block. Also

the decoder can decode two blocks of data at a time.

This increase the throughput of the system.

Many algorithms are introduced to perform

decoding in a faster way. In this paper, we are

introducing a new area reducing architecture for

turbodecoder.The reminder of this paper is organized

as follows: Section II briefly review our objective.

Section III, briefly reviews previous algorithms and

their architectures for performing decoding. In

section IV, discuss the new area efficient

turbodecoder architecture. Section V gives the

RESEARCH ARTICLE OPEN ACCESS

Nidhu Devi M Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 1), September 2014, pp.215-219

 www.ijera.com 216 | P a g e

detailed comparison between proposed method and

the previous method. Finally we concluded this paper

in section VI.

II. OBJECTIVE
Design of turbo decoder using Constant log BCJR

algorithm and analyze its performance.

III. PREVIOUS METHODOLOGY

Fig.1 Conventional LUT-LOG- BCJR

architecture

Turbo encoder[9] comprises a parallel

concatenation of two convolutional encoders.LUT-

LOG-BCJR decoder processes Logarithmic

Likelihood Ratios (LLR). Each encoder converts an

uncoded bit sequence into corresponding encoded bit

sequence. Fig 1 depicts a turbodecoder which

comprises a parallel concatenation of two decoders

that employ LUT-LOG-BCJR algorithm. Where each

LLR= ln (p(b=0))/(p(b=1)).Each LUT-LOG-BCJR

decoder processes two a priory LLR sequences, which

are converted into the extrinsic LLR sequence. This

extrinsic LLR sequence is iteratively exchanged with

that generated by the other LUT-LOG-BCJR decoder,

which is used as the priory LLR sequence in the next

iteration.

For the calculation of LLR first we have to

calculate the forward state metrics, reverse state

metrics and branch metrics. Forward state metrics are

calculated by a forward recursion from trellis time

k=1 to k=N, where N is the no. of information bits in

one data frame.Rcursive calculation of forward state

metrics is performed as

 Where s, s’ represents the set of all states s that

can transition into the state s’ , depending on the GP

of the encoder.

The max*[10] operation is used to represent the

jacobian logarithm , which may be approximated

using a LUT for the parameters p and q according to

Max*(p,q) ≈ max(p,q)

 0.75 , if (p-q) = 0

 0.5, if (p-q) € 0.25.0.5,0.75

 + 0.25, if(p-q) € 1,1.25,1.5,1.75,2

(2)

 0, otherwise

 The reverse state metrics can be calculated as

follows:

Note that the backward recursion for the last

window is initialized independently. By contrast,

backward recursion for the other windows is

initialized using β state metrics that where previously

obtained during the pre-backward recursion of the

next window.

Next branch metrics can be calculated as follows:

) (4)

The conventional architecture generates one

extrinsic LLR per clock cycle. Therefore it achieves a

high throughput, provided that it can be operated as a

high clock frequency. However the recursions involve

calculations that must be performed in series.

Therefore conventional architecture requires

additional hardware. In summary, conventional

architecture achieve high throughput.

IV. PROPOSED METHODOLOGY
4.1 TURBO ENCODER:

Mainly turbo encoding[11] is based on the parallel

concatenation of two Recursive Systematic

Convolutional encoders(RSC) is given in fig1.Two

encoders produces the redundant data as a parity bits

(Xk
p1

,Xk
p2

). The input data stream and parity bits are

combined in series to form the turbo coded word. The

interleaver separating two RCS encoders prevents at

least one of the encoders to terminate quickly.

Nidhu Devi M Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 1), September 2014, pp.215-219

 www.ijera.com 217 | P a g e

 Fig.2 turbo encoder

One of the main reasons of the turbo codes is that

they produce high weight code words. For example, if

the input sequence is low weight code, then the

systematic and parity1 output may produce a low

weight codes. Because of the interleaver the parity 2

less likely to produce low weight code word. The

interleaver shuffle the input sequence in such a way

that when introduce to the second encoder, it is more

likely to produce a high weight codeword. This is the

ideal for the code because high weight code is result

in better decoder performance. Intuitively, when

one of the decoder produces a weak codeword, the

other encoder has the least probability of producing

weak code word because of the interleaver. The

concatenated version of the two codeword is

therefore a strong code word. The interleaver design

also affects the turbo decoder performance by

reducing the degree of correlation between the soft-

output of each decoder which becomes the extrinsic

information to the other decoder. As the degree of

correlation between these two soft information

decreases the performance of the turbo decoder

increases.

4.2 LUT-LOG-BCJR ARCHITECTURE

In this section we propose a novel LUT-LOG-

BCJR architecture for energy constrained scenarios

which avoids the wastage of energy.Our philosophy is

to redesign the timing of the conventional architecture

in a manner that allows its components to be

efficiently merged. This produces an architecture

comprising only a low-complexity functional units.

Which are capable of performing entire LUT-LOG-

BCJR algorithm. Furthermore, our approach naturally

results in a low area and high clock frequency, which

implies low static energy consumption.LUT-LOG-

BCJR algorithm can be decomposed into classic ACS

operations.

4.3 DECOMPOSITION OF LUT-LOG-BCJR

ALGORITHM

LUT-LOG-BCJR algorithm comprises only

addition, subtraction and max* operations. Each

addition and subtraction constitutes a single ACS

operation and each max* calculation can be

considered equivalent to four ACS operations. In the

general case, where z > 0 fraction bits are employed in

the twos complement fixed- point LLR representation,

a total of (z+2) ACS operations are required to carry

out the max* calculation. By contrast only a single

ACS operation is required when z=0 or when

employing the Max-Log-BCJR algorithm, which

approximate max* by the max operation. Similarly

fewer ACS operation are required when employing

the Constant Log BCJR algorithm. This alternative

algorithm reduces hardware complexity and increase

the throughput, and therefore reducing their energy

consumption.

4.4 PROPOSED CONSTANT LOG BCJR

ARCHITECTURE

The proposed architecture is shown in fig.3.Unlike

the conventional architecture, it does not use the

additional hardware for three recursions. Instead our

architecture implement the entire algorithm using 2
m

ACS units in parallel, each of which performs one

ACS operation per clock cycle.The proposed

architecture ie, SISO[11] block consists of twin-level

register structure to minimize highly energy

consuming main memory access operations.The first

register level comprises R1,R2 and R3 and these are

used to store the intermediate results that are required

by the same ACS unit in a consecutive clock cycles.

The second register level comprises Reg bank1 and

Reg bank2 which are used to temporarly store the

LUT-LOG-BCJR variables.

The number of operations to perform the max* is

also reduced if we use constant log BCJR algorithm.

The proposed architecture is shown in the figure 4.5.

The proposed decoder processed two blocks at a time.

So each decoder calculates soft output in forward path

and backward path. The first step is to compute the

branch metric value the branch metric value.

The constant-log-MAP algorithm, approximates the

Jacobi logarithm and the max* is calculated as

Max*(p,q) = max(p,q) + { 0 if | y-x| > T; C if |y-x|<=

T} (5)

Where T is the threshold value and C is the

constant value. This algorithm is equivalent to the log-

MAP algorithm with the correction function

implemented by a 2-element look-up table.

Therefore this algorithm reduced the hardware

complexity. The value of C is .5 value of T is 1.5.

These values are chosen to the best value for the

calculation.

Nidhu Devi M Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 1), September 2014, pp.215-219

 www.ijera.com 218 | P a g e

Fig.3 Decoder block digram

4.5 ACS UNIT

The ACS[12] (Add Compare Select) unit consists

of two adders and compare and select unit consists

max* unit. The adder unit calculates the sum of

forward, branch and reverse state metric for zero

transition branch and one transition branch.

 R1 and R2 is loaded with the values of the

adders. It takes input from Registers R1 and R2.

Then given the result the R3.

 Fig. 4 max* unit

This unit help to do addition subtraction and the

max* calculation. If addition is to performed then

opcode O is 00000 and for subtraction the opcode O

is 10000

Operation in the max* calculation

OPERATION 1: O =10110,In this clock cycle

max* operation is calculated.

x~ and y~ are loaded from the register RI and R2 and

result is store in R3. Result C0 determine the

max(R1,R2)

OPERATION 2 :O =11001,x~ is loaded with the

value T,|R1-R2| is loaded in the y~ .C1 determine the

outcome of the test |R1-R2| >T

OPERATION 3: O = 00000,x~ is provided with

maximum of R1 and R2. y~ is loaded with constant

T. If C1 =0,Max(R1,R2) is added with C. If C1=1

Max(R1,R2) is added with 0.

5 RESULT ANALYSIS

In order to verify the area efficiency and power

efficiency, we have captured our new design in

verilog.For performance comparison we have also

captured the LUT-LOG-BCJR in verilog and

implemented into the FPGA.Following section gives

the performance results of these implementations.

5.1 Area analysis

TABLE 1. COMPARISON BASED ON THE

ACS UNIT

parameters Constant-Log-

BCJR

Lut-Log-BCJR

Memory used 186712

kilobytes

187224

kilobytes

Delay 7.235 ns 7.241ns

No.of lut

elements

2 4

From this table it is clear that the memory,delay of

the proposed architecture is less than that of the LUT-

LOG architecture.

5.2 Power analysis

Constant-Log-BCJR Lut-Log-BCJR

88MW 142MW

 From this table it is clear that the power

consumption of the proposed architecture is less

than that of the LUT-LOG-BCJR.

CONCLUSION
The study of turbo codes starts from the error

correction codes in the information theory. The turbo

codes are derived from the convolution codes. It is

the parallel concatenation of the recursive systematic

convolutional codes. Turbo codes are considered to

be having high BER performances. The turbo

encoding is less complex, but decoding is difficult.

There are many algorithms for the decoding. From

the available algorithms the Constant log BCJR

algorithm has less complexity and also has good

BER. In the design of low complexity turbo decoder

using Constant log BCJR algorithm process two

blocks of data at same time. Although the hardware

requirement is high, the advantage is that the

throughput is more due to processing of two blocks of

data at a time. When the proposed architecture is

compared with the LUT log architecture it is found

that the area and the power consumption is less. Also

it has better BER performance.

ACKNOWLEDGMENT
We would like our sincere thanks to the

Management and staff, SNG College of engineering

for providing the facilities.

REFERENCES
[1] L. R. BAHL, J. COCKE, F. JELINEK, AND

J. RAVIV ―Optimal Decoding of Linear

Codes for Minimizing Symbol Error Rate‖

IEEE Trans. Information theory., vol. 13, no.

4, pp.284–288, mar. 1974.

Nidhu Devi M Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 1), September 2014, pp.215-219

 www.ijera.com 219 | P a g e

[2] ChristophStuder, Christian Benkeser,

SandroBelfanti, andQuiting Huang,‖ Design

and Implementation of a Parallel Turbo-

Decoder ASIC for 3GPP-LTE‖ IEEE Journal

OF Solid-State Circuits, Vol. 46, No. 1,pp.

no. 8-17, January 2011.

[3] L. Li, R. G. Maunder, B. M. Al-Hashimi, and

L. Hanzo, ―An energy-efficient error

correction scheme for IEEE 802.15.4 wireless

sensor networks,‖ Trans. Circuits Syst. II,

vol. 57, no. 3, pp. 233–237, 2010.

[4] Cheng-Chi Wong, Ming-Wei Lai, Chien-

Ching Lin, Hsie-Chia Chang, and Chen-Yi

Lee, ―Turbo Decoder Using Contention-Free

Interleaverand Parallel Architecture‖ IEEE

Journal of Solid-State Circuits, vol. 45, no. 2,

pp. no. 422-432, February 2010.

[5] StylianosPapaharalabos, P.

TakisMathiopoulos, GuidoMasera,and

Maurizio Martina, ―On Optimal and Near-

Optimal Turbo Decoding Using Generalized

max* Operator‖,IEEE Communications

Letters, 2009.

[6] Z. Wang, ―High-speed recursion

architectures for MAP-Based turbo

decoders,‖ IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 15, no. 4, pp. 470–

474, Apr. 2000.

[7] C.M.Wu, M. D. Shieh, C. H.Wu,Y.T.Hwang,

and J.H.Chen, ―VLSI architectural design

tradeoffs for sliding-window log-MAP

decoders,‖ IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 13, no. 4, pp. 439–

447, Apr. 2005.

[8] Jagadeesh Kazaand Chaitali Chakrabarti,

―Design and Implementation of Low-Energy

Turbo Decoders‖ IEEE transactions on Very

Large Scale Integration (VLSI) systems, vol.

12, no. 9, September 2004.

[9] ―Architectural Strategies for Low-Power

VLSI Turbo Decoders‖IEEE transactions on

Very Large Scale Integration (VLSI)

Systems, vol. 10, no. 3, June 2002.

[10] C. Schurgers, F. Catthoor, and M. Engels,

―Memory optimization of MAP turbo decoder

algorithms,‖ IEEE Trans. Very Large Scale

Integr.(VLSI) Syst., vol. 9, no. 2, pp. 305–

312, Feb

[11] M. C. Valenti and J. Sun, ―The UMTS turbo

code and an efficient decoder implementation

suitable for software-defined radios,‖ Int. J.

Wirel. Inform. Netw., vol. 8, no. 4, pp. 203–

215, 2001.

[12] Liang Li, Robert G. Maunder, Bashir M. Al-

Hashimi, Fellow, and LajosHanzo‖ A Low-

Complexity Turbo Decoder Architecture for

Energy-Efficient Wireless Sensor Networks‖

IEEE transactions on Very Large Scale

Integration (vlsi) systems, vol. 21, no. 1,

pp.14-22,January 2013.

